题目内容

如图,AB为相交两圆⊙O1与⊙O的公切线,且O1在⊙O上,大圆⊙O的半径为4,则公切线AB的长的取值范围为______.
如图,设圆O1的半径为R,连接OA,O1B,OO1,作O1F⊥OA,
由四边形ABO1F是矩形,得AB=FO1;由勾股定理得,OO12=OF2+O1F2
即42=O1F2+(4-R)2
整理得,AB=O1F=
-R2+8R
=
-(R-4)2+16

由于两圆相交,则R的取值范围为:0<R<8,
∴0<AB≤4,且当R=4时,AB=4,
故答案为:0<AB≤4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网