题目内容
【题目】在四边形中,,,分别是,上的点,当△周长最小时,的度数为( )
A.B.C.D.
【答案】B
【解析】
要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=55°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.
解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,
∵∠C=55°,
∴∠DAB=125°,
∴∠HAA′=55°,
∴∠AA′E+∠A″=∠HAA′=55°,
∵∠EA′A=∠EAA′,∠FAD=∠A″,
∴∠EAA′+∠A″AF=55°,
∴∠EAF=125°-55°=70°.
故选:B.
练习册系列答案
相关题目