题目内容
【题目】如图,矩形ABCD中,AD=4,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是 .
【答案】4
【解析】解:以CD为轴,将△ACD往上翻转180°,如图,
过点A作AE⊥A′C于E点,AE交CD于F点,
当Q与F点重合,P′与E点重合时,AQ+QP=AF+EF=AE最短(两点之间直线最短),
∵矩形ABCD中,AD=4,∠CAB=30°,
∴∠A′CD=∠ACD=∠CAB=30°,
∴∠A′CA=60°,
又∵AC=A′C,
∴△A′CA为等边三角形,且A′A=2AD=8,
AE=A′Asin∠A′CA=8×=4 .
故答案为:4 .
以CD为轴,将△ACD往上翻转180°,由已知的边角关系可知△A′CA为等边三角形,求出A′C边上的高线,由两点之间直线最短即可得出结论.
练习册系列答案
相关题目
【题目】随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.
第一天 | 第二天 | 第三天 | 第四天 | 第五天 | 第六天 | 第七天 | |
路程(km) | ﹣8 | ﹣11 | ﹣14 | 0 | ﹣16 | +41 | +8 |
(1)请求出这七天平均每天行驶多少千米;
(2)若每行驶100km需用汽油6升,汽油价6.2元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?