题目内容
【题目】如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在射线OA上,开始时,PO=6cm,如果⊙P以1cm/秒的速度沿由A向B的方向移动,那么当⊙P的运动时间t(秒)满足什么条件时,⊙P与直线CD相交?
【答案】当4<t<8时,圆P与直线CD相交.
【解析】试题分析:首先分析相切时的数量关系,则点P到CD的距离应是1,根据30°所对的直角边是斜边的一半,得OP=2;那么当点P在OA上时,需要运动(6-2)÷1=4秒;当点P在OB上时,需要运动(6+2)÷1=8秒.因为在这两个切点之间的都是相交,所以4<t<8.
试题解析: ∵OP=6cm,
∴当点P在OA上时,需要运动(6-2)÷1=4秒,此时⊙P与CD相切;
当点P在OB上时,需要运动(6+2)÷1=8秒,此时⊙P与CD相切;
∵在这两个切点之间时,⊙P与CD都是相交的,
∴4<t<8.
练习册系列答案
相关题目
【题目】我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.
某校抽查的学生文章阅读的篇数统计表
文章阅读的篇数(篇) | 3 | 4 | 5 | 6 | 7及以上 |
人数(人) | 20 | 28 | m | 16 | 12 |
请根据统计图表中的信息,解答下列问题:
(1)求被抽查的学生人数和的值;
(2)求本次抽查的学生文章阅读篇数的中位数和众数;
(3)若该校共有800名学生,根据抽查结果估计该校学生在这一周内文章阅读的篇数为4篇的人数.