题目内容

【题目】五边形ABCDE中,∠EAB=∠ABC=∠BCD=90°,AB=BC,且满足以点B为圆心,AB长为半径的圆弧AC与边DE相切于点F,连接BE,BD.

(1)如图1,求∠EBD的度数;
(2)如图2,连接AC,分别与BE,BD相交于点G,H,若AB=1,∠DBC=15°,求AGHC的值.

【答案】
(1)

【解答】解:如图1,

连接BF,

∵DE与⊙B相切于点F,

∴BF⊥DE,

在Rt△BAE与Rt△BEF中,

∴Rt△BAE≌Rt△BEF,

∴∠1=∠2,

同理∠3=∠4,

∵∠ABC=90°,

∴∠2+∠3=45°,

即∠EBD=45°;


(2)

【解答】

如图2,

连接BF并延长交CD的延长线于P,

∵∠4=15°,

由(1)知,∠3=∠4=15°,

∴∠1=∠2=30°,∠PBC=30°,

∵∠EAB=∠PCB=90°,AB=1,

∴AE=,BE=

在△ABE与△PBC中,,

∴△ABE≌△PBC,

∴PB=BE=

∴PF=-1,

∵∠P=60°,

∴DF=2﹣

∴CD=DF=2﹣

∵∠EAG=∠DCH=45°,

∠AGE=∠BDC=75°,

∴△AEG∽△CHD,

∴AGCH=CDAE,

∴AGCH=CDAE=(2﹣=


【解析】(1)如图1,连接BF,由DE与⊙B相切于点F,得到BF⊥DE,通过Rt△BAE≌Rt△BEF,得到∠1=∠2,同理∠3=∠4,于是结论可得;
(2)如图2,连接BF并延长交CD的延长线于P,由△ABE≌△PBC,得到PB=BE=,求出PF=-1,通过△AEG∽△CHD,列比例式即可得到结果.
【考点精析】通过灵活运用切线的性质定理和相似三角形的判定与性质,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网