题目内容
【题目】在形如ab=N的式子中,我们已经研究两种情况:①已知a和b,求N,这是乘方运算,②已知b和N,求a,这是开放运算,现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫做对数运算.
定义:如果ab=N,(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作:b=logaN,例如求log28,因为23=8,所以
log8=3,又比如∵2﹣3=,∴log2=﹣3
(1)根据定义计算:
①log381= ②log10=1③如果logx16=4,那么x=
(2)设ax=M,ay=N,则logaM=x,logaN=y(a>0,a≠1,M、N均为正数),
∵ax.ay=ax+y=M.N
∴logaMN=x+y,即logaMN=logaM+logaN
这是对数运算的重要性质之一,进一步,我们还可以得出:
logaM1M2M3…Mn= (其中M1、M2、M3…、Mn均为正数a>0,a≠1)
(3)请你猜想:loga= (a>0,a≠1,M、N均为正数)
【答案】(1)4,2,(2)logaM1+logaM2+…+logaMn,(3)logaM﹣logaN.
【解析】
试题分析:阅读题目,理解题意,明确对数的定义、积的对数和商的对数的运算法则,可逐步推出结果.
解:(1)①因为34=81,所以log381=4;②因为100=1,所以log101=0;③因为24=16,所以x=2.
(2)结合题意的分析,可知logaM1M2M3…Mn=logaM1+logaM2+…+logaMn.
(3)因为logaMN=logaM+logaN,所以可猜想:loga=logaM﹣logaN(a>0,a≠1,M、N均为正数).
故答案为:4,2,logaM1+logaM2+…+logaMn,logaM﹣logaN.