题目内容
【题目】方程10x=4x的解_________;
【答案】0
【解析】试题分析:方程10x=4x,移项得10x-4x=6,即6x=0,解得x=0
【题目】下列多项式中能用平方差公式分解因式的是( )A.a2+(﹣b)2B.5m2﹣20mnC.﹣x2﹣y2D.﹣x2+9
【题目】在形如ab=N的式子中,我们已经研究两种情况:①已知a和b,求N,这是乘方运算,②已知b和N,求a,这是开放运算,现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫做对数运算.
定义:如果ab=N,(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作:b=logaN,例如求log28,因为23=8,所以
log8=3,又比如∵2﹣3=,∴log2=﹣3
(1)根据定义计算:
①log381= ②log10=1③如果logx16=4,那么x=
(2)设ax=M,ay=N,则logaM=x,logaN=y(a>0,a≠1,M、N均为正数),
∵ax.ay=ax+y=M.N
∴logaMN=x+y,即logaMN=logaM+logaN
这是对数运算的重要性质之一,进一步,我们还可以得出:
logaM1M2M3…Mn= (其中M1、M2、M3…、Mn均为正数a>0,a≠1)
(3)请你猜想:loga= (a>0,a≠1,M、N均为正数)
【题目】下列运算正确的是( )A.(a﹣1)2=a2﹣1B.(2a)2=2a2C.a2a3=a6D.aa2=a3
【题目】在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
【题目】如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=,求AD的长.
【题目】如图,双曲线y=经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为6,则k的值是 .
【题目】如图所示,已知BE平分∠ABC,∠1=∠2,求证:∠AED=∠C.完善以下推理过程。
证明:∵BE平分∠ABC,∴∠1=∠3.( )
又∵∠1=∠2(已知),∴ = ( 等量代换),
∴ ∥ ( )
∴∠AED=∠C( )
【题目】如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.
(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;
(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;
(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.