题目内容
【题目】如图,矩形 ABCD 中,对角线 AC 的垂直平分线交 AD 、BC 于点 E 、F , AC 与EF 交于点O ,连结 AF 、CE 。
(1)求证:四边形 AFCE 是菱形;
(2)若 AB 4, AD 8 ,求菱形 AFCE 的边长。
【答案】(1)见解析;(2)3.
【解析】
(1)由矩形的性质得出AD∥BC,∠EAO=∠FCO,证明△AEO≌△CFO,得出AE=CF,证出四边形AFCE是平行四边形,再由对角线AC⊥EF,即可得出结论; (2)设AF=CF=x,则BF=8-x,在Rt△ABF中,根据勾股定理得出方程,解方程即可.
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∴∠EAO=∠FCO,
∵EF是AC的垂直平分线,
∴AO=CO,∠EOA=∠FOC=90°,
在△AEO和△CFO中,
,
∴△AEO≌△CFO(ASA),
∴AE=CF,
∴四边形AFCE是平行四边形,
又∵AC⊥EF,
∴四边形AFCE是菱形;
(2)解:∵四边形AFCE是菱形,
∴AF=CF, 设AF=CF=x,则BF=8-x,
在Rt△ABF中,AF2=AB2+BF2,
即x2=42+(8-x)2, 解得 x= 3,
∴菱形AFCE的边长为3.
练习册系列答案
相关题目