题目内容
【题目】某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.
(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.
(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:
①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.
你认为哪种方案既省时又省钱?试比较说明.
【答案】(1)60天,40天;(2)方案③既省时又省钱.
【解析】
(1)设甲小组单独修完需要x天,乙小组单独修完需要y天,根据“甲小组单独修理这批桌凳比乙小组多用20天”,以及桌凳总数不变,便可建立方程组进行解答;
(2)综合(1)所得求出这批旧桌凳的数目,然后求出三种方案的工作时间与实际花费,再进行比较即可.
解:(1)设甲小组单独修理这批桌凳需要x天,乙小组单独修理这批桌凳需要y天.
根据题意,得
解得
答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天.
(2)这批旧桌凳的数目为60×16=960(套).
方案①:学校需付费用为60×(80+10)=5400(元);
方案②:学校需付费用为40×(120+10)=5200(元);
方案③:学校需付费用为×(120+80+10)=5040(元).
比较知,方案③既省时又省钱.
故答案为:(1)60天,40天;(2)方案③既省时又省钱.
练习册系列答案
相关题目