题目内容
【题目】小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(B,F,D在同一条直线上)。一直小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据: ≈1.732, ≈1.414,结果保留整数)
【答案】解:延长AE交CD于点G.设CG=xm,
在直角△CGE中,∠CEG=45°,则EG=CG=xm.
在直角△ACG中,AG= xm.
∵AG-EG=AE,
∴ x-x=30,
解得:x=15( +1)≈15×2.732≈40.98(m).
则CD=40.98+1.5=42.48(m).
答:这栋建筑物CD的高度约为42m
【解析】通过延长AE,把特殊角放到直角三角形中,利用三角函数用CG=x的代数式表示AG、EG,根据线段之差列出方程.
练习册系列答案
相关题目
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列结论:
①ac<0; ②当x>1时,y的值随x值的增大而减小;
③当 时, ; ④3是方程ax2+(b﹣1)x+c=0的一个根.
其中正确的结论是(填正确结论的序号).