题目内容
【题目】已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.
(1)求证:△AEB≌△CDA;
(2)求∠BPQ的度数;
(3)若BQ⊥AD于Q,PQ=6,PE=2,求BE的长.
【答案】(1)见解析;(2)60°;(3)14
【解析】
(1)根据等边三角形的性质,通过全等三角形的判定定理SAS证得结论;
(2)利用(1)中的全等三角形的对应角相等和三角形外角的性质,即可求得∠BPQ=60°;
(3)利用(2)的结果求得∠PBQ=30°,所以由“30度角所对的直角边是斜边的一半”得到2PQ=BP=12,则易求BE=BP+PE=14.
(1)证明:∵△ABC是等边三角形,
∴∠BAC=∠C=60°,AB=CA,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS);
(2)∵△ABE≌△CAD,
∴∠ABE=∠CAD,
∴∠ABE+∠BAP=∠CAD+∠BAP,
即∠BPQ=∠BAC=60°;
(3)∵BQ⊥AD,
∴∠BQP=90°,
∴∠PBQ=30°,
∴BP=2PQ=12,
∴BE=BP+PE=12+2=14
练习册系列答案
相关题目