题目内容
【题目】平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.
(1)抛物线的对称轴为x=(用含m的代数式表示);
(2)若AB∥x轴,求抛物线的表达式;
(3)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(xp , yp),yp≤2,求m的取值范围.
【答案】
(1)m
(2)解:当x=0时,y=mx2﹣2m2x+2=2,
∴点A(0,2).
∵AB∥x轴,且点B在直线x=4上,
∴点B(4,2),抛物线的对称轴为直线x=2,
∴m=2,
∴抛物线的表达式为y=2x2﹣8x+2
(3)当m>0时,如图1.
∵A(0,2),
∴要使0≤xp≤4时,始终满足yp≤2,只需使抛物线y=mx2﹣2m2x+2的对称轴与直线x=2重合或在直线x=2的右侧.
∴m≥2;
当m<0时,如图2,
在0≤xp≤4中,yp≤2恒成立.
综上所述,m的取值范围为m<0或m≥2.
【解析】解:(1)抛物线的对称轴为x= =m.所以答案是:m.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
【题目】为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:
价格 | 甲 | 乙 |
进价(元/件) | m | m+20 |
售价(元/件) | 150 | 160 |
如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.
(1)求m的值;
(2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?