题目内容
【题目】(1)【证法回顾】证明:三角形中位线定理.
已知:如图1,DE是△ABC的中位线.
求证: .
证明:添加辅助线:如图1,在△ABC中,延长DE (D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;
请继续完成证明过程:
(2)【问题解决】
如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.
(3)【拓展研究】
如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=,DF=2,∠GEF=90°,求GF的长.
【答案】(1)DE∥BC,DE=BC,证明见解析;(2)5; (3) .
【解析】(1)分析:根据三角形的中位线定理填写即可;利用“边角边”证明△ADE和△CFE全等,根据全等三角形对应角相等可得∠A=∠ECF,全等三角形对应边相等可得AD=CF,然后求出四边形BCFD是平行四边形,根据平行四边形的性质证明即可.(2)由,正方形性质及E为AD 中点得出△ADE≌△CFE,由全等三角形推出,EF垂直平分GH,从而求解.(3) 过点D作AB的平行线交GE的延长线于点H,过H作CD的垂线,垂足为P,连接HF,可证明△AEG≌△DEH,结合条件可得到△HPD为等腰直角三角形,可求得PF的长,在Rt△HFP中,可求得HF,则可求得GF的长.
(1)DE∥BC,DE=BC
证明:在△ADE和△CFE中, ,∴△ADE≌△CFE(SAS),
∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,
∴四边形BCFD是平行四边形,∴DE∥BC,DE=BC.
(2)如图2,延长GE、FD交于点H,
∵E为AD中点,
∴EA=ED,且∠A=∠EDH=90°,
在△AEG和△DEH中
∴△AEG≌△DEH(ASA),
∴AG=HD=2,EG=EH,∵∠GEF=90°,∴EF垂直平分GH,
∴GF=HF=DH+DF=2+3=5;
(3)如图3,过点D作AB的平行线交GE的延长线于点H,过H作CD的垂线,垂足为P,连接HF,
同(1)可知△AEG≌△DEH,GF=HF,∴∠A=∠HDE=105°,AG=HD=,
∵∠ADC=120°,∴∠HDF=360°﹣105°﹣120°=135°,
∴∠HDP=45°,∴△PDH为等腰直角三角形,
∴PD=PH=3,∴PF=PD+DF=3+2=5,
在Rt△HFP中,∠HPF=90°,HP=3,PF=5,
∴HF= == ∴GF=.
点睛;本题考查了四边形的综合应用,考查了正方形的性质,全等三角形的判定和性质,等腰三角形的性质,勾股定理;本题考查知识点较多综合性较强,难度较大.