题目内容
【题目】-0.2的倒数是( )
A.-2B.-5C.5D.0.2
【答案】B
【解析】
略
【题目】综合与实践
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.
第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.
问题解决
(1)请在图2中证明四边形AEFD是正方形.
(2)请在图4中判断NF与ND′的数量关系,并加以证明.
(3)请在图4中证明△AEN是(3,4,5)型三角形.
探索发现
(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.
【题目】如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.
(1)求证:△OAD∽△ABD;
(2)当△OCD是直角三角形时,求B、C两点的距离;
(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.
【题目】如图,直线l1、l2相交于点A(2,3),直线l1与x轴交点B的坐标为(﹣1,0),直线l2与y轴交于点C,已知直线l2的解析式为y=2.5x﹣2,结合图象解答下列问题: (1)求直线l1的解析式;(2)求△ABC的面积.
【题目】某市出租车收费标准为:起步价(3千米以内或3千米)10元,3千米后每千米价1.8元,则某人乘坐出租车x(x>3)千米需付费( )元.
A. 10+1.8xB. 3+1.8x
C. 10+1.8(x﹣3)D. 3+1.8(x﹣3)
【题目】随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,2017年中哈铁路(中国至哈萨克斯坦)运输量达12800000,将12800000用科学记数法表示为_____.
【题目】如图,四边形ABCD中,∠BAD= 120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为 .
【题目】如图,CD∥AB,∠ABC,∠BCD 的角平分线交 AD 于 E 点,且 E 在 AD 上,CE 交 BA 的延长线于 F 点.(1)试问 BE 与 CF 互相垂直吗?若垂直,请说明理由;(2)若 CD=3,AB=4,求 BC 的长 .
【题目】下列计算正确的是( )
A. x3+x3=x6B. (2x)3=6x3
C. 2x23x=6x3D. (2a﹣2b)2=4a2﹣4b2.