题目内容
【题目】综合与实践
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.
第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.
问题解决
(1)请在图2中证明四边形AEFD是正方形.
(2)请在图4中判断NF与ND′的数量关系,并加以证明.
(3)请在图4中证明△AEN是(3,4,5)型三角形.
探索发现
(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.
【答案】(1)证明见解析;(2)NF=ND′,证明见解析;(3)证明见解析;(4)△MFN,△MD′H,△MDA.
【解析】
试题分析:(1)根据题中所给(3,4,5)型三角形的定义证明即可;
(2)NF=ND′,证明Rt△HNF≌Rt△HND′即可;
(3)根据题中所给(3,4,5)型三角形的定义证明即可;
(4)由△AEN是(3,4,5)型三角形,凡是与△AEN相似的△都是(3,4,5)型三角形.
试题解析:(1)∵四边形ABCD是矩形,∴∠D=∠DAE=90°.由折叠知:AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形.∵AE=AD,∴矩形AEFD是正方形.
(2)NF=ND′.证明如下:
连结HN.由折叠知:∠AD′H=∠D=90°,HF=HD=HD′.
∵四边形AEFD是正方形,∴∠EFD=90°.
∵∠AD′H=90°,∴∠HD′N=90°.
在Rt△HNF和Rt△HND′中,∵HN=HN,HF=HD′,∴Rt△HNF≌Rt△HND′,∴NF=ND′.
(3)∵四边形AEFD是正方形,∴AE=EF=AD=8cm,由折叠知:AD′=AD=8cm,EN=EF-NF=(8-x)㎝.
在Rt△AEN中,由勾股定理得: ,即,解得:x=2,∴AN=8+x=10(㎝),EN=6(㎝),∴AN=6:8:10=3:4:5,∴△AEN是(3,4,5)型三角形.
(4)∵△AEN是(3,4,5)型三角形,凡是与△AEN相似的△都是(3,4,5)型三角形,故答案为:△MFN,△MD′H,△MDA.
【题目】学校举行了主题为“让历史照亮未来”的演讲比赛,其中代表七、八年级参赛的两队各10人的比赛成绩如下表(10分制):
七年级队 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
八年级队 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)请直接写出七年级队成绩的中位数为 , 八年级队成绩的众数为;
(2)若七、八年级队的平均成绩均为9分,请分别计算七、八年级队的方差.