题目内容
【题目】如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:
(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.
【答案】(1)s(2)当t=s时,S取得最大值,最大值为cm2(3)不存在。理由见解析(4)存在,cm2
【解析】
解:∵AB=10cm,AC=8cm,BC=6cm,
∴由勾股定理逆定理得△ABC为直角三角形,∠C为直角。
(1)BP=2t,则AP=10﹣2t.
若PQ∥BC,则,即,解得。
∴当s时,PQ∥BC。
(2)如图1所示,过P点作PD⊥AC于点D。
则PD∥BC,∴△APD∽△ABC。
∴,即,解得。
∴S=×AQ×PD=×2t×()
。
∴当t=s时,S取得最大值,最大值为cm2。
(3)不存在。理由如下:
假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,
则有S△AQP=S△ABC,而S△ABC=ACBC=24,∴此时S△AQP=12。
由(2)可知,S△AQP=,∴=12,化简得:t2﹣5t+10=0。
∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,
∴不存在某时刻t,使线段PQ恰好把△ABC的面积平分。
(4)存在。
假设存在时刻t,使四边形AQPQ′为菱形,
则有AQ=PQ=BP=2t。
如图2所示,过P点作PD⊥AC于点D,
则有PD∥BC,
∴△APD∽△ABC。
∴,即。
解得:PD=,AD=,
∴QD=AD﹣AQ=。
在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即()2+()2=(2t)2,
化简得:13t2﹣90t+125=0,解得:t1=5,t2=。
∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=。
由(2)可知,S△AQP=
∴S菱形AQPQ′=2S△AQP=2×()=2×[﹣×()2+6×]=。
∴存在时刻t=,使四边形AQPQ′为菱形,此时菱形的面积为cm2。
(1)由PQ∥BC时的比例线段关系,列一元一次方程求解。
(2)如图1所示,过P点作PD⊥AC于点D,得△APD∽△ABC,由比例线段,求得PD,从而可以得到S的表达式,然后利用二次函数的极值求得S的最大值。
(3)利用(2)中求得的△AQP的面积表达式,再由线段PQ恰好把△ABC的面积平分,列出一元二次方程;由于此一元二次方程的判别式小于0,则可以得出结论:不存在这样的某时刻t,使线段PQ恰好把△ABC的面积平分。
(4)根据菱形的性质及相似三角形比例线段关系,求得PQ、QD和PD的长度;然后在Rt△PQD中,求得时间t的值;最后求菱形的面积,值得注意的是菱形的面积等于△AQP面积的2倍,从而可以利用(2)中△AQP面积的表达式,这样可以化简计算。
【题目】某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.
成绩 | 人数频数 | 百分比频率 |
0 | ||
5 | ||
10 | 5 | |
15 | ||
20 | 5 |
根据表中已有的信息,下列结论正确的是
A. 共有40名同学参加知识竞赛
B. 抽到的同学参加知识竞赛的平均成绩为10分
C. 已知该校共有800名学生,若都参加竞赛,得0分的估计有100人
D. 抽到同学参加知识竞赛成绩的中位数为15分
【题目】甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:
甲:9,10,8,5,7,8,10,8,8,7;
乙:5,7,8,7,8,9,7,9,10,10;
丙:7,6,8,5,4,7,6,3,9,5.
(1)根据以上数据求出表中a,b,c的值;
平均数 | 中位数 | 方差 | |
甲 | 8 | 8 | b |
乙 | a | 8 | 2.2 |
丙 | 6 | c | 3 |
(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定,用列举法求甲、乙相邻出场的概率.