题目内容
【题目】如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.
【答案】证明见解析.
【解析】
试题分析:根据题意我们不难得出四边形GEFC是个矩形,因此它的对角线相等.如果连接EC,那么EC=FG,要证明AE=FG,只要证明EC=AE即可.证明AE=EC就要通过全等三角形来实现.三角形ABE和BEC中,有∠ABD=∠CBD,有AB=BC,有一组公共边BE,因此构成了全等三角形判定中的SAS,因此两三角形全等,得AE=EC,即AE=GF.
试题解析:连接EC.
∵四边形ABCD是正方形,EF⊥BC,EG⊥CD,
∴∠GCF=∠CFE=∠CGE=90°,
∴四边形EFCG为矩形.
∴FG=CE.
又BD为正方形ABCD的对角线,
∴∠ABE=∠CBE.
在△ABE和△CBE中,
,
∴△ABE≌△CBE(SAS).
∴AE=EC.
∴AE=FG.
练习册系列答案
相关题目