题目内容
【题目】某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.
(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?
(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;
(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?
【答案】(1)该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)w=﹣10a+2400;(3)12月份该店需要支付这两种水果的货款最少应是1500元.
【解析】
(1)设该店5月份进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数星,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式;
(3)根据甲种水果不超过90千克,可得出a的取值范固,再利用一次函数的性质即可解决最值问题.
解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,
根据题意得:,
解得,
答:该店5月份购进甲种水果100千克,购进乙种水果50千克;
(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,
根据题意得:w=10a+20(120﹣a)=﹣10a+2400;
(3)根据题意得,a≤90,由(2)得,w=﹣10a+2400,
∵﹣10<0,w随a的增大而减小,
∴a=90时,w有最小值w最小=﹣10×90+2400=1500(元).
答:12月份该店需要支付这两种水果的货款最少应是1500元.