题目内容

一长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD边上(如图).

(1)求AM、MD的长;

(2)你能说明点M是线段AD的黄金分割点吗?

解:(1)AM=一l  MD=3一

 (2)∵AM=一l,MD=3一,AD=2

∴MD?AD=(3一)×2= 6―2

AM= (一l)=6―2

∴AM= MD?AD

则点M是线段AD的黄金分割点

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网