题目内容
【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A( , )和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;
(3)求△PAC为直角三角形时点P的坐标.
【答案】
(1)
解:∵B(4,m)在直线y=x+2上,
∴m=4+2=6,
∴B(4,6),
∵A( , )、B(4,6)在抛物线y=ax2+bx+6上,
∴ ,解得 ,
∴抛物线的解析式为y=2x2﹣8x+6
(2)
解:设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),
∴PC=(n+2)﹣(2n2﹣8n+6),
=﹣2n2+9n﹣4,
=﹣2(n﹣ )2+ ,
∵PC>0,
∴当n= 时,线段PC最大且为
(3)
解:∵△PAC为直角三角形,
i)若点P为直角顶点,则∠APC=90°.
由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;
ii)若点A为直角顶点,则∠PAC=90°.
如答图3﹣1,过点A( , )作AN⊥x轴于点N,则ON= ,AN= .
过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,
∴MN=AN= ,∴OM=ON+MN= + =3,
∴M(3,0).
设直线AM的解析式为:y=kx+b,
则: ,解得 ,
∴直线AM的解析式为:y=﹣x+3 ①
又抛物线的解析式为:y=2x2﹣8x+6 ②
联立①②式,解得:x=3或x= (与点A重合,舍去)
∴C(3,0),即点C、M点重合.
当x=3时,y=x+2=5,
∴P1(3,5);
iii)若点C为直角顶点,则∠ACP=90°.
∵y=2x2﹣8x+6=2(x﹣2)2﹣2,
∴抛物线的对称轴为直线x=2.
如答图3﹣2,作点A( , )关于对称轴x=2的对称点C,
则点C在抛物线上,且C( , ).
当x= 时,y=x+2= .
∴P2( , ).
∵点P1(3,5)、P2( , )均在线段AB上,
∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或( , )
【解析】(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(2)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)当△PAC为直角三角形时,根据直角顶点的不同,有三种情形,需要分类讨论,分别求解.