题目内容
【题目】如图,A,B两点在数轴上,A点对应的有理数是﹣2,线段AB=12,点P从点A出发,沿AB以每秒1个单位长度的速度向终点B匀速运动;同时点Q从点B出发,沿BA以每秒2个单位长度的速度向终点A匀速运动,设运动时间为ts
(1)请在数轴上标出原点O和B点所对应的有理数:
(2)直接写出PA= ,BQ= (用含t的代数式表示);
(3)当P,Q两点相遇时,求t的值;
(4)当P,Q两点相距5个单位长度时,直接写出线段PQ的中点对应的有理数.
【答案】(1)见解析;(2)t,2t;(3)t=4;(4)线段PQ的中点对应的有理数或.
【解析】
(1)∵A点对应的有理数是﹣2,线段AB=12,则B点表示的数是10;
(2)由题意可得:PA=t,BQ=2t;
(3)相遇时t+2t=12,则t=4;
(4)由题意可知,P点表示的数为﹣2+t,Q点表示的数是10﹣2t,设PQ的中点M的表示的数是4﹣,由题意可得|PQ|=|12﹣3t|=5,解得t=或t=,当t=时,M点表示的数为;当t=,M点表示的数为.
解:(1)∵A点对应的有理数是﹣2,线段AB=12,
∴B点表示的数是10;
(2)由题意可得:PA=t,BQ=2t,
故答案为t,2t;
(3)相遇时t+2t=12,
∴t=4;
(4)由题意可知,P点表示的数为﹣2+t,Q点表示的数是10﹣2t,
设PQ的中点M的表示的数是4﹣,
∵P,Q两点相距5个单位长度,
∴|PQ|=|12﹣3t|=5,
∴t=或t=,
当t=时,M点表示的数为;
当t=,M点表示的数为;
综上所述:线段PQ的中点对应的有理数或.
练习册系列答案
相关题目