题目内容
【题目】如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:其中正确的个数是( )
①a<0;
②b<0;
③c<0;
④;
⑤a+b+c<0.
A.1 个B.2 个C.3 个D.4 个
【答案】B
【解析】
根据二次函数图象的开口方向、对称轴位置、与x轴、y轴的交点坐标、过(1,a+b+c)等知识,逐个判断即可.
解:抛物线开口向下,因此①正确,
对称轴为x=>0,可知a、b异号,a<0,则b>0,因此②不正确;
抛物线与y轴交点在正半轴,因此c>0,故③不正确;
抛物线的顶点坐标为(﹣,),又顶点坐标为(,1),因此④正确;
抛物线与x轴的一个交点在x轴的负半轴,对称轴为x=,
当x=1时,y=a+b+c>0,因此⑤不正确;
综上所述,正确的结论有2个,
故选:B.
【题目】某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,…,按照以上方式不断循环.
小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.
下面是小明的探究过程,请补充完整:
(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况
接通电源后的时间x(单位:min) | 0 | 1 | 2 | 3 | 4 | 5 | 8 | 10 | 16 | 18 | 20 | 21 | 24 | 32 | … |
水箱中水的温度y(单位:℃) | 20 | 35 | 50 | 65 | 80 | 64 | 40 | 32 | 20 | m | 80 | 64 | 40 | 20 | … |
m的值为 ;
(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式 ;
当4<x≤16时,写出一个符合表中数据的函数解析式 ;
②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:
(3)如果水温y随时间x的变化规律不变,预测水温第8次达到40℃时,距离接通电源 min.