题目内容
【题目】如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.
(1)求证:CA=CN;
(2)连接DF,若cos∠DFA=,AN=
,求圆O的直径的长度.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;
(2)连接OC,由圆周角定理结合cos∠DFA=,AN=
,即可求出CH、AH的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O直径的长度.
试题解析:(1)证明:连接OF,则∠OAF=∠OFA,如图所示.
∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.
∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.
∵ME∥AC,∴∠M=∠C=2∠OAF.
∵CD⊥AB,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF,∠BAC=90°﹣∠C=90°﹣2∠OAF,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC,∴CA=CN.
(2)连接OC,如图2所示.
∵cos∠DFA=,∠DFA=∠ACH,∴
=
.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN=
=
=
a=
,∴a=2,AH=3a=6,CH=4a=8.
设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=,∴圆O的直径的长度为2r=
.
![](http://thumb.zyjl.cn/images/loading.gif)