题目内容
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:
①4ac-b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠-1),
其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
【答案】B.
【解析】
试题解析:∵抛物线和x轴有两个交点,
∴b2-4ac>0,
∴4ac-b2<0,∴①正确;
∵对称轴是直线x=-1,和x轴的一个交点在点(0,0)和点(1,0)之间,
∴抛物线和x轴的另一个交点在(-3,0)和(-2,0)之间,
∴把(-2,0)代入抛物线得:y=4a-2b+c>0,
∴4a+c>2b,∴②错误;
∵把x=1代入抛物线得:y=a+b+c<0,
∴2a+2b+2c<0,
∵-=-1,
∴b=2a,
∴3b+2c<0,∴③正确;
∵抛物线的对称轴是直线x=-1,
∴y=a-b+c的值最大,
即把x=m(m≠-1)代入得:y=am2+bm+c<a-b+c,
∴am2+bm+b<a,
即m(am+b)+b<a,∴④正确;
即正确的有3个,
故选B.
练习册系列答案
相关题目