题目内容
【题目】如图,在Rt△ABC中,∠B=90°,AC=120cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒.过点D作DF⊥BC于点F,连接DE,EF.当四边形AEFD是菱形时,t的值为( )
A. 20秒 B. 18秒 C. 12 秒 D. 6秒
【答案】A
【解析】∵直角△ABC中,∠C=90°∠A=30°.
∵CD=4t,AE=2t,
又∵在直角△CDF中,∠C=30°,
∴DF=12CD=2t,
∵DF⊥BC
∴∠CFD=90°
∵∠B=90°
∴∠B=∠CFD
∴DF∥AB,
由(1)得:DF=AE=2t,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,
即1204t=2t,
解得:t=20,
即当t=20时,AEFD是菱形;
故选A.
点睛:用菱形的性质进行计算或证明时,一般是根据菱形的性质,将有关的边、角的求解问题,转化到边上,再利用相等等条件求解,从而解决问题.本题中易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;
练习册系列答案
相关题目