题目内容
【题目】(问题情境)如图,中,,,我们可以利用与相似证明,这个结论我们称之为射影定理,试证明这个定理;
(结论运用)如图,正方形的边长为,点是对角线、的交点,点在上,过点作,垂足为,连接,
(1)试利用射影定理证明;
(2)若,求的长.
【答案】【问题情境】证明见解析;【结论运用】证明见解析;(2).
【解析】
通过证明Rt△ACD∽Rt△ABC得到AC:AB=AD:AC,然后利用比例性质即可得到AC2=ADAB;
【结论运用】
(1)根据射影定理得BC2=BOBD,BC2=BFBE,则BOBD=BFBE,即=,加上∠OBF=∠EBD,于是可根据相似三角形的判定得到△BOF∽△BED;
(2)先计算出DE=4,CE=2,BE=2,OB=3,再利用(1)中结论△BOF∽△BED得到=,即=,然后利用比例性质求OF.
如图1.
∵CD⊥AB,∴∠ADC=90°,而∠CAD=∠BAC,∴Rt△ACD∽Rt△ABC,∴AC:AB=AD:AC,∴AC2=ADAB;
(1)如图2.
∵四边形ABCD为正方形,∴OC⊥BO,∠BCD=90°,∴BC2=BOBD.
∵CF⊥BE,∴BC2=BFBE,∴BOBD=BFBE,即=,而∠OBF=∠EBD,∴△BOF∽△BED;
(2)∵BC=CD=6,而DE=CE,∴DE=4,CE=2.
在Rt△BCE中,BE==2.在Rt△OBC中,OB=BC=3.
∵△BOF∽△BED,∴=,即=,∴OF=.
练习册系列答案
相关题目
【题目】二次函数,,是常数,且中的与的部分对应值如下表所示,则下列结论中,正确的个数有( )
;当时,;当时,的值随值的增大而减小;
方程有两个不相等的实数根.
A. 4个 B. 3个 C. 2个 D. 1个