题目内容
【题目】已知:如图①,将的菱形沿对角线剪开,将沿射线方向平移,得到点为边上一点(点不与点、点重合),将射线绕点逆时针旋转,与的延长线交于点,连接.
①求证:;
②探究的形状;
如图②,若菱形变为正方形,将射线绕点逆时针旋转,原题其他条件不变,中的①和②两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.
【答案】(1)①证明见解析;②△是等边三角形,理由见解析;(2)①∠=∠成立,理由见解析;②不成立,△是等腰直角三角形,理由见解析.
【解析】
(1)①先由菱形可知四边相等,再由∠D=60°得等边△ADC和等边△ABC,则对角线AC与四边都相等,利用ASA证明△ANB≌△AMC,得结论;
②根据有一个角是60°的等腰三角形是等边三角形得出:△AMN是等边三角形;
(2)①成立,根据正方形得45°角和射线AM绕点A逆时针旋转45°,证明△ANB∽△AMC,得∠ANB=∠AMC;
②不成立,△AMN是等腰直角三角形,利用①中的△ANB∽△AMC,得比例式进行变形后,再证明△NAM∽△BAD,则△AMN是等腰直角三角形.
(1)如图1,①∵四边形是菱形,
∴,
∵∠60°,
∴△ADC和△ABC是等边三角形,
∴,∠BAC60°,
∵∠60°,
∴∠=∠,
由△ADC沿射线DC方向平移得到△BCE,可知∠CBE60°,
∵∠ABC60°,
∴∠ABN60°,
∴∠ABN∠ACB60°
∴△≌△,
∴∠=∠;
②如图1,△是等边三角形,理由是:
由△≌△,
∴AMAN,
∵∠60°,
∴△是等边三角形;
(2)①如图2,∠=∠成立,理由是:
在正方形ABCD中,
∴∠BAC∠DAC=∠BCA45°,
∵∠NAM45°,
∴∠=∠,
由平移得:∠EBC∠CAD45°,
∵∠ABC=90°,
∴∠ABN180°90°45°45°,
∴∠ABN∠ACM45°,
∴△∽△,
∴∠=∠;
②如图2,不成立,
△是等腰直角三角形,理由是:
∵△∽△,
∴,
∴,
∵∠=∠=45°,
∴△∽△,
∴∠=∠=90°,
∴△是等腰直角三角形.