题目内容

【题目】如图,在等腰直角△ABC中,∠BAC=90°,BAD=30°,AD=AE,则∠EDC的度数是______

【答案】15°

【解析】

由△ABC为等腰直角三角形,可得∠B=45°,已知∠BAD=30°,得∠DAE=90°-30°=60°,又AD=AE,则△ADE为等边三角形,∠ADE=60°,由外角的性质可求∠EDC的度数.

∵在△ABC中,∠BAC=90°,AB=AC,
∴∠B=45°,
又∵∠BAD=30°,
∴∠DAE=90°-30°=60°,
AD=AE,∴△ADE为等边三角形,则∠ADE=60°,
又∵∠EDC+∠ADE=∠B+∠BAD(外角定理),
即∠EDC=45°+30°-60°=15°.
故答案为:15°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网