题目内容

【题目】一次函数与一次函数的图象的交点的纵坐标为

(1)的值;

(2) 时,求证:

【答案】(1)1;(2)证明见解析.

【解析】

(1)联立一次函数解析式,根据交点纵坐标为,可一求得交点横坐标为1,进而得到a +b +c =2,对所给式子进行化简,将a +b +c =2代入即可求出的值;

(2)a + b + c =2,平方化简得a2 + b2 + c2 = 4-2×1 = 2,对所求证的式子进行变形得,(b-a)[1-2(a + b) + (b2 + a2 + ab)] = 0,分类进行讨论即可.

(1)依题意得:,且abc≠0,

由①得:x=1,代入②得:a + b + c =2

a3 + b3 + c3-3abc-2(a2 + b2 + c2) + (a + b + c) = 0

(a + b + c)(a2 + b2 + c2-ab-bc-ca)-2(a2 + b2 + c2) + (a + b + c) = 0

2(a2 + b2 + c2-ab-bc-ca)-2(a2 + b2 + c2) + 2 = 0

ab + bc + ca = 1

(2)(a + b + c)2 = 22 = a2 + b2 + c2 + 2(ab + bc + ca)

a2 + b2 + c2 = 4-2×1 = 2

时,要证:

只需证:b(1-b)2 = a(1-a)2

b(1-b)2-a(1-a)2 = 0

b-a-2(b2-a2) + (b3-a3) = 0

(b-a)[1-2(a + b) + (b2 + a2 + ab)] = 0 (*)

i)当a = b时,(*)式显然成立;

ii)当a≠b时,

a + b + c = 2,a2 + b2 + c2 = 2,ab + bc + ca = 1

a + b = 2-c,a2 + b2 = 2-c2,ab = 1-c(a + b) = 1-c(2-c)

1-2(a + b) + (b2 + a2 + ab) = 1-2(2-c) + 2-c2 + 1-c(2-c)

= 1-4+2c+2-c2+1-2c+c2

= 0

(*)式成立.

综上,当 时,均有

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网