题目内容

【题目】ABC是等边三角形,点EAC边上,点DBC边上的一个动点,以DE为边作等边DEF,连接CF

(1)如图1,当点D与点B重合时,求证:ADE≌△CDF;

(2)如图2,当点D运动到如图2的位置时,猜想CECFCD之间的数量关系,并说明理由;

(3)如图3,当点DBC延长线上时,直接写出CECFCD之间的数量关系,不证明.

【答案】(1)证明见解析;(2)CE=CD+CF,证明见解析;(3)CF=CD+CE.

【解析】

(1)利用等边三角形的性质可得AB=BC,DE=DF,由∠ABC=EDF=60°,∠EBC为公共角,得∠ADE=CDF,根据SAS得证△ADE≌△CDF.

(2)CE=CF+CD,理由为:过DDG∥AB,交AC于点G,连接CF,如图,由DGAB平行,利用两直线平行同位角相等,确定出三角形GDC为等边三角形,再由三角形EDF为等边三角形,利用等边三角形的性质得到两对边相等,再利用等式的性质得到夹角相等,利用SAS得到三角形EGD与三角形FCD全等,利用全等三角形对应边相等得到EG=FC,由EC=EG+GC,等量代换即可得证;
(3)CF=CE+CD,过DDG∥AB,交AC的延长线于点G,只要证明△EGD≌△FCD即可解决问题;

(1) ∵△ABC和△DEF是等边三角形

AB=BC,DE=DF,

ABC=EDF=60° ,

∴∠ADE=CDF ,

∴△ADE≌△CDF ,

(2)CE=CD+CF ,理由为:

证明:过DDG∥AB,交AC于点G,连接CF,

∵DG∥AB,
∴∠CGD=∠CDG=60°,△CDG为等边三角形,
∵△DEF为等边三角形,
∴∠EDF=∠GDC=60°,ED=FD,GD=CD,
∴∠EDF-∠GDF=∠GDC-∠GDF,即∠EDG=∠FDC,
在△EDG和△FDC中,

,
∴△EDG≌△FDC(SAS),
∴EG=FC,
CE=CG+EG=CG+CF=CF+CD;

(3) CF=CD+CE .

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网