题目内容
【题目】如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②E为CD中点;③∠AEB=90°;④S△ABE=S四边形ABCD;⑤BC=CE.( )
A. 0个 B. 1个 C. 2个 D. 3个
【答案】B
【解析】
试题∵AD∥BC,
∴∠ABC+∠BAD=180°,
∵AE、BE分别是∠BAD与∠ABC的平分线,
∴∠BAE=∠BAD,∠ABE=∠ABC,
∴∠BAE+∠ABE=(∠BAD+∠ABC)=90°,
∴∠AEB=180°-(∠BAE+∠ABE)=180°-90°=90°,
故③小题正确;
延长AE交BC延长线于F,
∵∠AEB=90°,
∴BE⊥AF,
∵BE平分∠ABC,
∴∠ABE=∠FBE,
在△ABE与△FBE中,
,
∴△ABE≌△FBE(ASA),
∴AB=BF,AE=FE,
∵AD∥BC,
∴∠EAD=∠F,
在△ADE与△FCE中,
,
∴△ADE≌△FCE(ASA),
∴AD=CF,
∴AB=BC+CF=BC+AD,故①小题正确;
∵△ADE≌△FCE,
∴CE=DE,即点E为CD的中点,故②小题正确;
∵△ADE≌△FCE,
∴S△ADE=S△FCE,
∴S四边形ABCD=S△ABF,
∵S△ABE=S△ABE,
∴S△ABE=S四边形ABCD,故④小题正确;
若AD=BC,则CE是Rt△BEF斜边上的中线,则BC=CE,
∵BD与BC不一定相等,
∴BC与CE不一定相等,故⑤小题错误.
综上所述,不正确的有⑤共1个.
故选B.
练习册系列答案
相关题目