题目内容
【题目】我们对多项式x+x﹣6进行因式分解时,可以用特定系数法求解.例如,我们可以先设x2+x﹣6=(x+a)(x+b),显然这是一个恒等式.根据多项式乘法将等式右边展开有:x2+x﹣6=(x+a)(x+b)=x+(a+b)x+ab
所以,根据等式两边对应项的系数相等,可得:a+b=1,ab=﹣6,解得a=3,b=﹣2或者a=﹣2,b=3.所以x2+x﹣6=(x+3)(x﹣2).当然这也说明多项式x2+x﹣6含有因式:x+3和x﹣2.
像上面这种通过利用恒等式的性质来求未知数的方法叫特定系数法.利用上述材料及示例解决以下问题.
(1)已知关于x的多项式x2+mx﹣15有一个因式为x﹣1,求m的值;
(2)已知关于x的多项式2x3+5x2﹣x+b有一个因式为x+2,求b的值.
【答案】解:(1)由题设知:x2+mx﹣15=(x﹣1)(x+n)=x2+(n﹣1)x﹣n,
故m=n﹣1,﹣n=﹣15,
解得n=15,m=14.
故m的值是14;
(2)由题设知:2x3+5x2﹣x+b=(x+2)(2x+t)(x+k)=2x3+(2k+t+4)x2+(4k+2t+kt)x+2kt,
∴2k+t+4=5,4k+2t+kt=﹣1,2kt=b.
解得:k1= , k2=﹣1.
∴t1=﹣2,t2=3.
∴b1=b2=2kt=﹣6.
【解析】(1)根据多项式乘法将等式右边展开有:x2+mx﹣15=(x﹣1)(x+n)=x2+(n﹣1)x﹣n,所以,根据等式两边对应项的系数相等可以求得m的值;
(2)解答思路同(1).
练习册系列答案
相关题目