题目内容
【题目】如图,等边△ABC的边长为2,过点B的直线且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是____.
【答案】4
【解析】
连接CC′,根据△ABC、△A′BC′均为正三角形即可得出四边形A′BCC′为菱形,进而得出点C关于BC'对称的点是A',以此确定当点D与点B重合时,AD+CD的值最小,代入数据即可得出结论.
解:连接CC′,如图所示.
∵△ABC、△A′BC′均为正三角形,
∴∠ABC=∠A′=60°,A′B=BC=A′C′,
∴A′C′∥BC,
∴四边形A′BCC′为菱形,
∴点C关于BC'对称的点是A',
∴当点D与点B重合时,AD+CD取最小值,
此时AD+CD=2+2=4.
故答案为:4.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目