题目内容
【题目】(本小题满分8分)
如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(),正六边形的边长为()cm(其中),求这两段铁丝的总长
【答案】解:由已知得.正五边形周长为,正六边形周长为.
因为正五边形和正六边形的周长相等.所以
整理得,,配方得.解得,(舍去)
故正五边形的周长为
又因为两段铁丝等长,所以这两段铁丝的总长为420cm.
答:这两段铁丝的总长为420cm.
【解析】
试题根据正五边形和正六边形的周长相等,列一元二次方程求x的值,得出正六边形的边长,再根据所求边长即可求两段铁丝的总长.
试题解析:由已知得,正五边形周长为5(x2+17)cm,正六边形周长为6(x2+2x)cm,
∵正五边形和正六边形的周长相等,
∴5(x2+17)=6(x2+2x),
整理得x2+12x-85=0,配方得(x+6)2=121,
解得x1=5,x2=-17(舍去),
故正五边形的周长为(cm).
又因为两段铁丝等长,所以这两段铁丝的总长为420cm.
答:这两段铁丝的总长为420cm.
考点: 一元二次方程的应用.
练习册系列答案
相关题目