题目内容
【题目】如图,在中,,以为直径的交于点,交于点,过点作,垂足为,连接.
(1)求证:直线与相切;
(2)若,,求的长.
【答案】(1)证明见解析;(2)9.
【解析】
(1)连接,利用,,证得,易证,故为的切线;
(2)证得,求得,利用求得答案即可.
证明: 连接OD.
∵AB=AC,
∴∠B=∠C,
∵OD=OC,
∴∠ODC=∠C,
∴∠ODC=∠B,
∴OD∥AB,
∵DF⊥AB,
∴OD⊥DF,
∵点D在⊙O上,
∴直线DF与⊙O相切;
(2)解:∵四边形ACDE是⊙O的内接四边形,
∴∠AED+∠ACD=180°,
∵∠AED+∠BED=180°,
∴∠BED=∠ACD,
∵∠B=∠B,
∴△BED∽△BCA,
∴,
∵OD∥AB,AO=CO,
∴,
又∵AE=7,
∴,
∴BE=2,
∴AC=AB=AE+BE=7+2=9.
练习册系列答案
相关题目