题目内容

【题目】阅读下面材料:

小炎遇到这样一个问题:如图1,点EF分别在正方形ABCD的边BCCD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.

小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段ABAD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).

参考小炎同学思考问题的方法,解决下列问题:

1)如图3,四边形ABCD中,AB=AD∠BAD=90°EF分别在边BCCD上,∠EAF=45°.若∠B∠D都不是直角,则当∠B∠D满足_ 关系时,仍有EF=BE+DF

2)如图4,在△ABC中,∠BAC=90°AB=AC,点DE均在边BC上,且∠DAE=45°,若BD=1EC=2,求DE的长.

【答案】1∠B+∠D=180°(或互补);(2

【解析】

试题(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要FDG三点共线,即∠ADG+∠ADF=180°,即∠B+∠D=180°

(2) △ABDA点逆时针旋转90°△ACG,可使ABAC重合,通过证明△AEG≌△AED得到DE=EG,由勾股定理即可求得DE的长.

(1)∠B+∠D=180°(或互补).

(2)∵ AB=AC

△ABDA点逆时针旋转90°△ACG,可使ABAC重合.

∠B=∠ACGBD=CGAD=AG

△ABC中,∠BAC=90°

∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°

∴ EC2+CG2=EG2

△AEG△AED,

∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD

∵AD=AGAE=AE

∴△AEG≌△AED

∴DE=EG

∵CG=BD,

∴ BD2+EC2=DE2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网