题目内容
【题目】如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.
(1)求证:DE是⊙O的切线;
(2)求tan∠ABE的值;
(3)若OA=2,求线段AP的长.
【答案】
(1)证明:连接AD、OD,如图,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=AC,
∴AD垂直平分BC,即DC=DB,
∴OD为△BAC的中位线,
∴OD∥AC,
而DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切线;
(2)解:∵OD⊥DE,DE⊥AC,
∴四边形OAED为矩形,
而OD=OA,
∴四边形OAED为正方形,
∴AE=AO,
∴tan∠ABE= = ;
(3)解:∵AB是⊙O的直径,
∴∠AFB=90°,
∴∠ABF+∠FAB=90°,
而∠EAP+∠FAB=90°,
∴∠EAP=∠ABF,
∴tan∠EAP=tan∠ABE= ,
在Rt△EAP中,AE=2,
∵tan∠EAP= = ,
∴EP=1,
∴AP= = .
【解析】(1)连接AD、OD,根据圆周角定理得∠ADB=90°,由AB=AC,根据等腰三角形的直线得DC=DB,所以OD为△BAC的中位线,则OD∥AC,然后利用DE⊥AC得到OD⊥DE,这样根据切线的判定定理即可得到结论;(2)易得四边形OAED为正方形,然后根据正切的定义计算tan∠ABE的值;(3)由AB是⊙O的直径得∠AFB=90°,再根据等角的余角相等得∠EAP=∠ABF,则tan∠EAP=tan∠ABE= ,在Rt△EAP中,利用正切的定义可计算出EP,然后利用勾股定理可计算出AP.
【考点精析】根据题目的已知条件,利用圆周角定理和切线的判定定理的相关知识可以得到问题的答案,需要掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.