题目内容
【题目】如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为 . (结果保留π)
【答案】 +2
【解析】解:如图所示:
∵斜边与半圆相切,点B是切点,
∴∠EBO=90°.
又∵∠E=30°,
∴∠EBC=60°.
∴∠BOD=120°,
∵OA=OB=4,
∴OC= OB=2,BC=2 .
∴S阴影=S扇形BOD+S△BOC= + ×2×2 = +2 .
所以答案是: +2 .
【考点精析】本题主要考查了切线的判定定理和扇形面积计算公式的相关知识点,需要掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)才能正确解答此题.
练习册系列答案
相关题目
【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成绩 | 中位数 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | 9.5 |
(1)完成表中填空①;②;
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为 ,你认为推荐谁参加比赛更合适,请说明理由.