题目内容
【题目】某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为60m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各所示:项目的工作量如图:
(1)从统计图中可知:擦玻璃的面积占总面积的百分比为 , 每人每分钟擦课桌椅m2;
(2)扫地拖地的面积是m2;
(3)他们一起完成扫地和拖地任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,如果你是卫生委员,该如何分配这两组的人数,才能最快地完成任务?
【答案】
(1)20%;
(2)33
(3)设擦玻璃x人,则擦课桌椅(13﹣x)人,根据题意得:
( x):[ (13﹣x)]=12:15,
解得:x=8,
经检验x=8是原方程的解.
答:擦玻璃8人,擦课桌椅5人.
【解析】解:(1)根据题意得: 擦玻璃的面积占总面积的百分比是:1﹣55%﹣25%=20%;
每人每分钟擦课桌椅 m2;
所以答案是:20%, ;
⑵扫地拖地的面积是60×55%=33(m2);
所以答案是:33.
【考点精析】关于本题考查的分式方程的应用和扇形统计图,需要了解列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位);能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况才能得出正确答案.
【题目】某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资成本x成正比例关系,种植花卉的利润y2与投资成本x的平方成正比例关系,并得到了表格中的数据;
投资量x(万元) | 2 |
种植树木的利润y1(万元) | 4 |
种植花卉的利润y2(万元) | 2 |
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户计划以8万元资金投入种植花卉和树木,设他投入种植花卉金额万元,种植花卉和树木共获利润W万元,求出W与m之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?
(3)若该专业户想获利不低于22万元,在(2)的条件下,求出投资种植花卉的金额m的范围.