题目内容

(2012•包头)如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D且交⊙O于点F,连接BC,CF,AC.
(1)求证:BC=CF;
(2)若AD=6,DE=8,求BE的长;
(3)求证:AF+2DF=AB.
分析:(1)根据切线的性质首先得出CO⊥ED,再利用平行线的判定得出CO∥AD,进而利用圆周角、圆心角定理得出BC=CF;
(2)首先求出△EOC∽△EAD,进而得出r的长,即可求出BE的长;
(3)利用全等三角形的判定得出Rt△AGC≌Rt△ADC,进而得出Rt△CGB≌Rt△CDF,即可求出AD+DF=AB得出答案即可.
解答:(1)证明:如图,连接OC,
∵ED切⊙O于点C,
∴CO⊥ED,
∵AD⊥EC,
∴CO∥AD,
∴∠OCA=∠CAD,
∵∠OCA=∠OAC,
∴∠OAC=∠CAD,
BC
=
CF

∴BC=CF;

(2)解:在Rt△ADE中,
∵AD=6,DE=8,
根据勾股定理得AE=10,
∵CO∥AD,
∴△EOC∽△EAD,
EO
EA
=
OC
AD

设⊙O的半径为r,
∴OE=10-r,
10-r
10
=
r
6

∴r=
15
4

∴BE=10-2r=
5
2


(3)证明:过C作CG⊥AB于G,
∵∠OAC=∠CAD,AD⊥EC,
∴CG=CD,
在Rt△AGC和Rt△ADC中,
CG=CD
AC=AC

∴Rt△AGC≌Rt△ADC(HL),
∴AG=AD,
在Rt△CGB和Rt△CDF中,
BC=FC
CG=CD

∴Rt△CGB≌Rt△CDF(HL),
∴GB=DF,
∵AG+GB=AB,
∴AD+DF=AB,
AF+DF+DF=AB,
∴AF+2DF=AB.
点评:此题主要考查了切线的性质定理和圆周角及弧的关系、相似三角形的判定与性质、全等三角形的判定与性质等知识,得出GB=DF是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网