题目内容
【题目】如图,已知抛物线经过原点O,顶点A(1,﹣1),且与直线y=kx+2相交于B(2,0)和C两点
(1)求抛物线和直线BC的解析式;
(2)求证:△ABC是直角三角形;
(3)抛物线上存在点E(点E不与点A重合),使∠BCE=∠ACB,求出点E的坐标;
(4)在抛物线的对称轴上是否存在点F,使△BDF是等腰三角形?若存在,请直接写出点F的坐标.
【答案】(1)y=x2﹣2x,y=﹣x+2;(2)详见解析;(3)E();(4)符合条件的点F的坐标(1,)或(1,﹣)或(1,2+)或(1,2﹣).
【解析】
(1)将B(2,0)代入设抛物线解析式y=a(x﹣1)2﹣1,求得a,将B(2,0)代入y=kx+2,求得k;
(2)分别求出AB2、BC2、AC2,根据勾股定理逆定理即可证明;
(3)作∠BCE=∠ACB,与抛物线交于点E,延长AB,与CE的延长线交于点A',过A'作A'H垂直x轴于点H,设二次函数对称轴于x轴交于点G.根据对称与三角形全等,求得A'(3,1),然后求出A'C解析式,与抛物线解析式联立,求得点E坐标;
(4)设F(1,m),分三种情况讨论:①当BF=BD时,,②当DF=BD时,,③当BF=DF时,,m=1,然后代入即可.
(1)设抛物线解析式y=a(x﹣1)2﹣1,
将B(2,0)代入,
0=a(2﹣1)2﹣1,
∴a=1,
抛物线解析式:y=(x﹣1)2﹣1=x2﹣2x,
将B(2,0)代入y=kx+2,
0=2k+2,
k=﹣1,
∴直线BC的解析式:y=﹣x+2;
(2)联立,
解得,,
∴C(﹣1,3),
∵A(1,﹣1),B(2,0),
∴AB2=(1﹣2)2+(﹣1﹣0)2=2,
AC2=[1﹣(﹣1)]2+(﹣1﹣3)2=20,
BC2=[2﹣(﹣1)]2+(0﹣3)2=18,
∴AB2+BC2=AC2,
∴△ABC是直角三角形;
(3)如图,作∠BCE=∠ACB,与抛物线交于点E,延长AB,与CE的延长线交于点A',过A'作A'H垂直x轴于点H,设二次函数对称轴于x轴交于点G.
∵∠BCE=∠ACB,∠ABC=90°,
∴点A与A'关于直线BC对称,
AB=A'B,
可知△AFB≌△A'HB(AAS),
∵A(1,﹣1),B(2,0)
∴AG=1,BG=OG=1,
∴BH=1,A'H=1,OH=3,
∴A'(3,1),
∵C(﹣1,3),
∴直线A'C:,
联立:,
解得或,
∴E(,);
(4)∵抛物线的对称轴:直线x=1,
∴设F(1,m),
直线BC的解析式:y=﹣x+2;
∴D(0,2)
∵B(2,0),
∴BD=
,
,
①当BF=BD时,,
m=±,
∴F坐标(1,)或(1,﹣)
②当DF=BD时,,
m=2±,
∴F坐标(1,2+)或(1,2﹣)
③当BF=DF时,,
m=1,
F(1,1),此时B、D、F在同一直线上,不符合题意.
综上,符合条件的点F的坐标(1,)或(1,﹣)或(1,2+)或(1,2﹣).
【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数人数 |
第1组 | 6 | |
第2组 | 8 | |
第3组 | 14 | |
第4组 | a | |
第5组 | 10 |
请结合图表完成下列各题:
求表中a的值; 频数分布直方图补充完整;
若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.