题目内容
【题目】如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,求EF的长.
【答案】
【解析】分析:由正方形纸片ABCD的边长为3,可得∠C=90°,BC=CD=3,由根据折叠的性质得:EG=BE=1,GF=DF,然后设DF=x,在Rt△EFC中,由勾股定理EF2=EC2+FC2,即可得方程,解方程即可求得答案.
详解∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3.
根据折叠的性质得:EG=BE=1,GF=DF.
设DF=x,则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2.
在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3-x)2,
解得:.
∴DF= ,EF=1+
练习册系列答案
相关题目
【题目】今年,某市政府的一项实事工程就是由政府投入1 000万元资金,对城区4万户家庭的老式水龙头和13升抽水马桶进行免费改造,某社区为配合政府完成该项工作,对社区内1 200户家庭中的120户进行了随机抽样调查,并汇总成下表:
改造情况 | 均不改造 | ||||||
改造水龙头 | 改造马桶 | ||||||
1个 | 2个 | 3个 | 4个 | 1个 | 2个 | ||
户数 | 20 | 31 | 28 | 21 | 12 | 69 | 2 |
(1)试估计该社区需要对水龙头或马桶进行改造的家庭共有___户;
(2)改造后,一个水龙头一年大概可节约5吨水,一个马桶一年大约可节约15吨水,试估计该社区一年共可节约多少吨水?
(3)在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?