题目内容

【题目】已知,如图,AB是⊙O的直径,C为⊙O上一点,AD垂直于经过点C的直线DE,垂足为点D,AC平分∠DAB.

(1)求证:直线DE是⊙O的切线;
(2)连接BC,猜想:∠ECB与∠CAB的数量关系,并证明你的猜想.

【答案】
(1)

证明:连接OC,如图1所示:

∵OA=OC,

∴∠BAC=∠ACO,

∵AC平分∠DAB,

∴∠DAC=∠BAC,

∴∠ACO=∠DAC,

∴AD∥OC,

∵AD⊥DE,

∴OC⊥DE,

∴直线DE是⊙O的切线;


(2)

解:如图2所示:∠ECB=∠CAB,理由如下:

∵AB是⊙O的直径,

∴∠ACB=90°,

∴∠CAB+∠B=90°,

∵OC⊥DE,

∴∠ECB+∠BCO=90°,

∵OC=OB,

∴∠B=∠BCO,

∴∠ECB=∠CAB.


【解析】(1)连接OC,由等腰三角形的性质和已知条件得出∠ACO=∠DAC,证出AD∥OC,再由已知条件得出OC⊥DE,即可得出直线DE是⊙O的切线;(2)由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,得出∠ECB+∠BCO=90°,由等腰三角形的性质得出∠B=∠BCO,即可得出结论.
【考点精析】根据题目的已知条件,利用切线的性质定理的相关知识可以得到问题的答案,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网