题目内容

如图,直线(b>0)与双曲线(>0)交于A、B两点,连接OA、OB, AM⊥轴于M,BN⊥X轴于N;有以下结论:①OA =OB;②△AOM≌△BON;③若∠AOB=45°,则S△AOB=k;④AB=时,ON=BN=1,其中结论正确的是(    )

A. ①②③④           B. ①②③           C. ①②          D. ①②④
A

试题分析:①②设A(x1,y1),B(x2,y2),联立,得x2-bx+k=0,则x1•x2=k,又x1•y1=k,比较可知x2=y1,同理可得x1=y2,即ON=OM,AM=BN,可证结论;
③作OH⊥AB,垂足为H,根据对称性可证△OAM≌△OAH≌△OBH≌△OBN,可证SAOB=k;
④延长MA,NB交于G点,可证△ABG为等腰直角三角形,当AB=时,GA=GB=1,则ON-BN=GN-BN=GB=1.
A(x1,y1),B(x2,y2),代入中,得x1•y1=x2•y2=k,
联立,得x2-bx+k=0,
则x1•x2=k,又x1•y1=k,
∴x2=y1
同理x2•y2=k,
可得x1=y2, 
∴ON=OM,AM=BN,
∴①OA=OB,②△AOM≌△BON,正确;
③作OH⊥AB,垂足为H,

∵OA=OB,∠AOB=45°,
∵②△AOM≌△BON,正确;
∴∠MOA=∠BON=22.5°,
∠AOH=∠BOH=22.5°,
∴△OAM≌△OAH≌△OBH≌△OBN,
∴SAOB=SAOH+SBOH=SAOM+SBON=k+k=k,正确;
④延长MA,NB交于G点
 
∵NG=OM=ON=MG,BN=AM,
∴GB=GA,
∴△ABG为等腰直角三角形,
当AB=时,GA=GB=1,
∴ON-BN=GN-BN=GB=1,正确.
正确的结论有①②③④.
故选A.
点评:解题的关键是明确反比例函数图象上点的坐标特点,反比例函数图象的对称性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网