题目内容
【题目】如图,将△ABC沿着射线BC方向平移至△A′B′C′,使点A′落在∠ACB的外角平分线CD上,连结AA′.
(1)判断四边形ACC′A′的形状,并说明理由;
(2)在△ABC中,∠B=90°,AB=8,cos∠BAC=,求CB′的长.
【答案】(1)见解析;(2)4.
【解析】分析:
(1)由平移的性质结合平行四边形的判定方法易得四边形ACC′A′是平行四边形,由AA′∥CC′结合CD平分∠ACC′证得∠ACA'=∠AA'C,可得AA'=AC,从而可得平行四边形ACC′A′是菱形;
(2)在Rt△ABC中由已知条件易得AC=10,BC=6,结合平移的性质和四边形ACC′A′是菱形即可求得CB′的长度.
详解:
(1)四边形ACC′A′是菱形,理由如下:
由平移的性质可得:AA'=CC',且AA'∥CC'
∴四边形ACC′A′是平行四边形,
∵AA'∥CC',
∴∠AA'C=∠A'CB',
∵CD平分∠ACB',
∴∠ACA'=∠A'CB',
∴∠ACA'=∠AA'C,
∴AA'=AC,
∴平行四边形ACC′A′是菱形;
(2)在Rt△ABC中,∠B=90°,AB=8,
∴cos∠BAC=,
∴AC=10,
∴BC=
由平移的性质可得:BC=B'C'=6,
由(1)得四边形ACC′A′是菱形,
∴AC=CC'=10,
∴CB'=CC'﹣B'C'=10﹣6=4.
【题目】某电器超市销售每台进价为120元、170元的A,B两种型号的电风扇,如表所示是近2周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本)
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 6 | 5 | 2200元 |
第二周 | 4 | 10 | 3200元 |
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市再采购这两种型号的电风扇共130台,并且全部销售完,该超市能否实现这两批的总利润为8010元的目标?若能,请给出相应的采购方案;若不能,请说明理由.