题目内容

如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组成一条封闭曲线,我们把这条封闭曲线称为“蛋线”,已知点C的坐标为(0,-),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点.

(1)求A、B两点的坐标;
(2)“蛋线”在第四象限内是否存在一点P,使得∆PBC的面积最大?若存在,求出∆PBC面积的最大值;若不存在,请说明理由;
(3)当∆BDM为直角三角形时,请直接写出m的值.(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点间的距离为MN=.
(1)A(-1,0),B(3,0);(2)存在,;(3)-1或-.

试题分析:(1)将y=mx2-2mx-3m化为交点式,即可得到A、B两点的坐标;
(2)先用待定系数法得到抛物线C1的解析式,过点P作PQ∥y轴,交BC于Q,用待定系数法得到直线BC的解析式,再根据三角形的面积公式和配方法得到△PBC面积的最大值;
(3)先表示出DM2,BD2,MB2,再分两种情况:①DM2+BD2=MB2时;②DM2+MB2=BD2时,讨论即可求得m的值.
试题解析:(1)y=mx2-2mx-3m=m(x-3)(x+1),
∵m≠0,
∴当y=0时,x1=-1,x2=3,
∴A(-1,0),B(3,0);
(2)设C1:y=ax2+bx+c,将A、B、C三点的坐标代入得:
,解得
故C1:y=x2-x-
依题意,设点P的坐标为(n,n2-n-)(0<n<3)
则SPBC=SPOC+SBOP-SBOC =××n+×3×(-n2+n+)-×3×
=-(n-)2+
∵-<0,
∴当n=时SPBC的最大值是
(3)y=mx2-2mx-3m=m(x-1)2-4m,顶点M坐标(1,-4m),
当x=0时,y=-3m,
∴D(0,-3m),B(3,0),
∴DM2=(0-1)2+(-3m+4m)2=m2+1,
MB2=(3-1)2+(0+4m)2=16m2+4,
BD2=(3-0)2+(0+3m)2=9m2+9,
当△BDM为Rt△时有:DM2+BD2=MB2或DM2+MB2=BD2
①DM2+BD2=MB2时有:m2+1+9m2+9=16m2+4,
解得m=-1(∵m<0,∴m=1舍去);
②DM2+MB2=BD2时有:m2+1+16m2+4=9m2+9,
解得m=-(m=舍去).
综上,m=-1或-时,△BDM为直角三角形.
考点: 二次函数综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网