题目内容
【题目】如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.
(1)求证:△OAE≌△OBG.
(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由.
【答案】
(1)证明:∵四边形ABCD是正方形,
∴OA=OB,∠AOE=∠BOG=90°.
∵BH⊥AF,
∴∠AHG=∠AHB=90°,
∴∠GAH+∠AGH=90°=∠OBG+∠AGH,
∴∠GAH=∠OBG,
即∠OAE=∠OBG.
∴在△OAE与△OBG中, ,
∴△OAE≌△OBG(ASA);
(2)解:四边形BFGE为菱形;理由如下:
在△AHG与△AHB中, ,
∴△AHG≌△AHB(ASA),
∴GH=BH,
∴AF是线段BG的垂直平分线,
∴EG=EB,FG=FB.
∵∠BEF=∠BAE+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,
∴∠BEF=∠BFE,
∴EB=FB,
∴EG=EB=FB=FG,
∴四边形BFGE是菱形;
【解析】(1)由正方形的性质得出OA=OB,∠AOE=∠BOG=90°,再由角的互余关系证出∠OAE=∠OBG,由ASA即可证明△OAE≌△OBG;(2)先证明△AHG≌△AHB,得出GH=BH,由线段垂直平分线的性质得出EG=EB,FG=FB;再证出∠BEF=∠BFE,得出EB=FB,因此EG=EB=FB=FG,即可得出结论.
练习册系列答案
相关题目