题目内容

【题目】如图,正方形ABCD的边长为8cm,EFG分别是ABCDDA上的动点,且AE=BF=CG=DH.
(1)求证:四边形EFGH是正方形;
(2)判断直线EG是否经过某一定点,说明理由;
(3)求四边形EFGH面积的最小值.

【答案】
(1)

证明:∵四边形ABCD是正方形,

∴∠A=∠B=90°,

AB=DA,

∵AE= DH,

∴BE= AH,

∴△AEH≌△BFE,

∴EH=FE,∠AHE=∠BEF,

同理:FE=GF=HG,

∴EH= FE=GF=HG,

∴四边形EFGH是菱形,

∵∠A=90°,

∴∠AHE+∠AEH=90°,

∴∠BEF+∠AEH=90°,

∴∠FEH=90°,

∴菱形EFGH是正方形;


(2)

解:直线EG经过正方形ABCD的中心,

理由如下:连接BD交EG于点O,

∵四边形ABCD是正方形,

∴AB∥DC,AB=DC

∴∠EBD=∠GDB,

∵AE= CG,

∴BE= DG,

∵∠EOB=∠GOD,

∴△EOB≌△GOD,

∴BO=DO,即点O为BD的中点,

∴直线EG经过正方形ABCD的中心;


(3)

解:设AE= DH=x,

则AH=8-x,

在Rt△AEH中,EH2=AE2+AH2=x2+(8-x)2= 2x2-16x+64=2(x-4)2+32,

∴四边形EFGH面积的最小值为32cm.


【解析】(1)由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出结论;(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心;(3)设四边形EFGH面积为S,BE=xcm,则BF=(8-x)cm,由勾股定理得出S=x2+(8-x)2=2(x-4)2+32,S是x的二次函数,容易得出四边形EFGH面积的最小值.
【考点精析】本题主要考查了正方形的性质的相关知识点,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网