题目内容
【题目】如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数 (k≠0)的图象上.
(1)求a的值;
(2)直接写出点P′的坐标;
(3)求反比例函数的解析式.
【答案】
(1)解:把(﹣2,a)代入y=﹣2x中,得a=﹣2×(﹣2)=4,
∴a=4;
(2)解:∵P点的坐标是(﹣2,4),
∴点P关于y轴的对称点P′的坐标是(2,4)
(3)解:把P′(2,4)代入函数式y= ,得
4= ,
∴k=8,
∴反比例函数的解析式是y=
【解析】(1)把(﹣2,a)代入y=﹣2x中即可求a;(2)坐标系中任一点关于y轴对称的点的坐标,其中横坐标等于原来点横坐标的相反数,纵坐标不变;(3)把P′代入y= 中,求出k,即可得出反比例函数的解析式.
练习册系列答案
相关题目
【题目】我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:
养殖种类 | 成本(万元/亩) | 销售额(万元/亩) |
甲鱼 | 2.4 | 3 |
桂鱼 | 2 | 2.5 |
(1)2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额﹣成本)
(2)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?
(3)已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少千克?