题目内容
(2011•恩施州)如图,已知AB为⊙O的直径,BD为⊙O的切线,过点B的弦BC⊥OD交⊙O于点C,垂足为M.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=6cm时,求图中阴影部分的面积(结果不取近似值)
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=6cm时,求图中阴影部分的面积(结果不取近似值)
(1)证明:连接OC
∵OD⊥BC,O为圆心,
∴OD平分BC.
∴DB=DC.
∴△OBD≌△OCD.(SSS)
∴∠OCD=∠OBD.
又∵AB为⊙O的直径,BD为⊙O的切线,
∴∠OCD=∠OBD=90°,
∴CD是⊙O的切线;
(2)∵DB、DC为切线,B、C为切点,
∴DB=DC.
又DB=BC=6,
∴△BCD为等边三角形.
∴∠BOC=360°﹣90°﹣90°﹣60°=120°,
∠OBM=90°﹣60°=30°,BM=3.
∴OM=,OB=2.
∴S阴影部分=S扇形OBC﹣S△OBC
=﹣
=(cm2).
∵OD⊥BC,O为圆心,
∴OD平分BC.
∴DB=DC.
∴△OBD≌△OCD.(SSS)
∴∠OCD=∠OBD.
又∵AB为⊙O的直径,BD为⊙O的切线,
∴∠OCD=∠OBD=90°,
∴CD是⊙O的切线;
(2)∵DB、DC为切线,B、C为切点,
∴DB=DC.
又DB=BC=6,
∴△BCD为等边三角形.
∴∠BOC=360°﹣90°﹣90°﹣60°=120°,
∠OBM=90°﹣60°=30°,BM=3.
∴OM=,OB=2.
∴S阴影部分=S扇形OBC﹣S△OBC
=﹣
=(cm2).
略
练习册系列答案
相关题目